Later On

A blog written for those whose interests more or less match mine.

Omega-3s: How do they do that?

leave a comment »

I take 4g of wild salmon oil (in capsules) daily: 2g with breakfast, 2g in the evening. I’ve been doing this for years. I also try to get omega-3s in my diet, avoiding catfish and tilapia (farmed fish artificially high in omega-6 due to what they’re fed: corn), eating wild fish frequently, particularly oily fish (salmon, sardines, mackerel). Lots of plants, little beef (and when I eat that, I eat grassfed rather than grain-fed). Still: how do the omega-3s work?

Ethan J. Anderson and David A. Taylor take a look in The Scientist:

Four decades ago, Danish medical students Jørn Dyerberg and Hans Olaf Bang traveled west across the Greenland ice sheet on dogsleds to test a theory. For many years prior to their journey, there had been anecdotal reports that Greenland Eskimos had an extremely low incidence of heart disease, and Dyerberg and Bang speculated that this was linked to the high levels of polyunsaturated fatty acids (PUFAs) in the fish the native people consumed on a daily basis. After collecting and analyzing scores of blood samples, their hypothesis was borne out, and ever since, the medical and scientific community has been on a quest to determine exactly how PUFAs impart protective effects, and what amount must be ingested in order to achieve such benefits. Nearly 40 years and thousands of published studies later, however, these questions remain largely unanswered.

Cardiovascular disease continues to have an enormous impact on the world’s health and economy, making it all the more urgent that health-care practitioners find and implement low-cost prevention strategies. Dietary intake of PUFAs, specifically the n-3 PUFAs found in fish (commonly known as omega-3s), could serve as a perfect solution, but the lack of understanding of how PUFAs work—and continuing controversy over whether they really do work—has made it nearly impossible to properly implement their use in the clinic. Thus, a coordinated effort is needed to establish a mechanism for how n-3 PUFAs function in normal metabolism in order to develop proper therapeutic paradigms and to clarify their effectiveness in the prevention and treatment of cardiovascular disease.

Cardiovascular disease can affect any part of the circulatory system, from the heart and major arteries to veins and capillaries. Its causes are diverse, as are its treatments, which include compounds that exert vasodilating, anti-inflammatory, anti-thrombotic (reducing the formation of blood clots), anti-arrhythmic (suppressing abnormal heart rhythms), and heart rate–lowering effects. PUFAs from PUFA-rich foods and dietary supplements have shown therapeutic promise in virtually all of these areas. One of the more intriguing therapeutic potentials for n-3 PUFAs is . . .

Continue reading.

Written by LeisureGuy

15 November 2012 at 10:27 am

Posted in Food, Health, Medical, Science

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.