Later On

A blog written for those whose interests more or less match mine.

Abacus use can boost math skills (and other lessons on learning)

leave a comment »

I haven’t used an abacus, but I did do all my bookkeeping on a soroban for quite a while. The common abacus is Chinese in origin and each rod contains five beads below the bar (each representing 1) and two beads (each representing “5”) above the bar. The Japanese soroban has below the bar and one bead above the bar. Thus the soroban more or less forces base 10 computation: once move all 6 beads to the bar (representing 9: four “1” beads below the bar and one “5” bead above the bar), adding 1 forces a move to the next rod. (Images at the links.)

I would recommend the soroban, and it’s easy to learn: just practice the exercises and pretty soon your fingers move the beads appropriate when you simply think the number—as in touch-typing, when you think the word and your fingers type it. And here’s an excellent soroban for $19 including shipping. This one has a reset button to return all beads to the zero position for when you finish a calculation.

Jason Kottke has an interesting post:

The abacus counting device dates back thousands of years but has, in the past century, been replaced by calculators and computers. But studies show that abacus use can have an effect on how well people learn math. In this excerpt adapted from his new book Learn Better, education researcher Ulrich Boser writes about the abacus and how people learn.

Researchers from Harvard to China have studied the device, showing that abacus students often learn more than students who use more modern approaches.

UC San Diego psychologist David Barner led one of the studies, and he argues that abacus training can significantly boost math skills with effects potentially lasting for decades.

“Based on everything we know about early math education and its long-term effects, I’ll make the prediction that children who thrive with abacus will have higher math scores later in life, perhaps even on the SAT,” Barner told me.

Ignore the hyperbolic “and it changed my life” in the title…this piece is interesting throughout. For example, this passage on the strength of the mind-body connection and the benefits of learning by doing:

When first I watched high school abacus whiz Serena Stevenson, her hand gestures seemed like a pretentious affect, like people who wear polka-dot bow ties. But it turned out that her finger movements weren’t really all that dramatic, and on YouTube, I watched students with even more theatrical gesticulations. What’s more, the hand movements turned out to be at the heart of the practice, and without any arm or finger motions, accuracy can drop by more than half.

Part of the explanation for the power of the gestures goes to the mind-body connection. But just as important is the fact that abacus makes learning a matter of doing. It’s an active, engaging process. As one student told me, abacus is like “intellectual powerlifting.”

Psychologist Rich Mayer has written a lot about this idea, and in study after study he has shown that people gain expertise by actively producing what they know. As he told me: “Learning is a generative activity.”

I’d never heard of the concept of overlearning before:

Everybody from actors learning lines, to musicians learning new songs, to teachers trying to impart key facts to students has observed that learning has to “sink in” in the brain. Prior studies and also the new one, for example, show that when people learn a new task and then learn a similar one soon afterward, the second instance of learning often interferes with and undermines the mastery achieved on the first one.

The new study shows that overlearning prevents against such interference, cementing learning so well and quickly, in fact, that the opposite kind of interference happens instead. For a time, overlearning the first task prevents effective learning of the second task — as if learning becomes locked down for the sake of preserving master of the first task. The underlying mechanism, the researchers discovered, appears to be a temporary shift in the balance of two neurotransmitters that control neural flexibility, or “plasticity,” in the part of the brain where the learning occurred.

“These results suggest that just a short period of overlearning drastically changes a post-training plastic and unstable [learning state] to a hyperstabilized state that is resilient against, and even disrupts, new learning,” wrote the team led by corresponding author Takeo Watanabe, the Fred M. Seed Professor of Cognitive Linguistic and Psychological Sciences at Brown.


Written by LeisureGuy

8 March 2017 at 12:22 pm

Posted in Math

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s