Later On

A blog written for those whose interests more or less match mine.

Where Physics Meets Philosophy

leave a comment »

Five Books interviews popular-science writer Jim Baggott on some of his favorite books on physics:

As a non-physicist, I find physics really hard to understand compared to most other subjects. I tried some of Brian Greene’s books, for example, which are for a general audience. Even those, I struggled with. I find this really frustrating because physics is so important—it’s telling us what’s around us and what’s going on in the universe. And yet, somehow, my brain can’t grasp it. Why?

There is a challenge that anyone faces trying to present some of the ideas of contemporary physics—to explain what are really quite deep and somewhat convoluted ideas in ways that are accessible. In all of the work that I’ve done, I feel I get a little better at it each time. But I still tend to produce books that are a struggle for anyone coming at this without any background.

The other thing that you learn from this is that there is a sense in which, in a curious way, there never was any real guarantee that nature would, ultimately, be understandable in a simple way. That was maybe a little bit of a mistaken view—brought about by the fact that some aspects of the classical ways of looking at things, like the mechanics of Newton, were easier to get our heads around.

That’s actually quite an important message. If you struggle with the concepts, it’s because nature is pretty complicated—at least as far as we currently understand it.

And it’s always contingent. We never quite know when the next theoretical breakthrough or new piece of experimental data will turn our current ideas on their heads.

I think the concepts are graspable in a very general sense, that even people without the right kind of background can make some sense out of what’s going on. But it requires some effort, I have to say.

From reading your book about the discovery of the Higgs boson, it seems like you do find physics easy to understand?

No—I struggle with it. I’ve always had an ambition to write books where I’m stretching my own understanding and using it as a vehicle to learn. So I’m learning as I go along. And, then, you face the struggle of communicating that—to write about it in a way that’s hopefully accessible to as many people as possible.

But don’t be fooled. Some of the guys who seem very authoritative—who write best-selling popular science books—by and large they’re also on the edge of their own understanding. Nobody, frankly, has got a decent grasp of the full picture. It really is that challenging.

Yes, there is a level of deep mathematical complexity. But that’s a little bit of a red herring. That’s not the reason everyone struggles to come to terms with what the theories are saying. Irrespective of the mathematics, it’s the concepts that you end up wrestling with. They are actually quite baffling.

Richard Feynman—a very, very charismatic, American, Nobel prize-winning physicist—once said, ‘I think I can safely say that nobody understands quantum mechanics.’ Given that he won his Nobel Prize for developing a structure called quantum electrodynamics, you’d think that at least he would have the authority to say, ‘I fully understand that.’ But no.

I think anyone is kidding themselves if they say they understand these things. There’s an ability to work with these concepts, where you learn how to calculate things. If you can set aside any concerns for what the hell it might mean, then you get on and you can make some progress.

But the minute you start to ponder what it might actually all mean is the minute you start to tie yourself in conceptual knots. And that’s the way it is.

How many physics books have you written now?

I’ve written ten books. My first was published back in 1992, in the dark ages, and was called The Meaning of Quantum Theory. My most recent book, Origins, was a much more ambitious attempt to try and explain the scientific story of the whole of creation from the Big Bang to human consciousness. But mostly I’ve tended to write about things like particle physics and quantum mechanics. My latest book, called Mass: The Quest to Understand Matter from Greek Atoms to Quantum Fields, is firmly back in this territory.

In the title of your book about the discovery of Higgs boson you refer to it as the ‘God particle.’ Has your philosophical view of the world been affected by studying physics?

It helps to understand where that term came from. An American particle physicist called Leon Lederman published a book in 1993 called The God Particle. He explains, in the foreword to the book, that he actually wanted to call it The Goddamn Particle, but his publisher wouldn’t let him.

The search for the Higgs in the early 90s was causing unbelievable anguish. At the time, American theorists were pitching for building something called the Superconducting Supercollider which was going to cost I don’t know how many billions of dollars. Eventually, in 1993, Congress cancelled it.

Although the name ‘the God particle’ brings a lot of baggage with it, there is a sense in which it is quite important. It’s a particle that physicists had been wanting to find for a very long time.

The way that modern quantum field theory works is that you have a field, which has values everywhere throughout space and time. Particles are therefore considered to be fundamental disturbances or fluctuations of the quantum field. They kind of pop out, they undergo collisions, and we make measurements on them.

The Higgs boson is the fundamental quantum particle of the Higgs field. And it’s the Higgs field that actually gives you the ‘woo’ effect and starts to lead you to become somewhat metaphysical or even theological because the existence of this field means that particles in the universe have mass. There’s absolutely no doubt that, according to current theories of physics, if the Higgs field did not exist then nothing would exist—at least, nothing with mass. Everything in the universe would be a bit like light—it would just zip around at the speed of light and nothing would ever happen.

That was one of the reasons that Lederman felt compelled to say there’s a sense in which we’re at the book of Genesis here. Whether you accept his arguments or not is neither here nor there, but it was a name that struck a chord in the popular imagination and it’s a name that tended to stick. I have no bones about using it in the subtitle of my book, which was published just a few short weeks after the discovery of the Higgs was announced.

When I talked to Peter Higgs about it, and asked, ‘Do you have a problem with that?’ he actually didn’t. He’s been on the record as saying he hates the name, but he didn’t seem to mind. It’s one of those things. As a writer and as a communicator, you have to find a way to hold people’s interest.

Ok, you are straying along the edges of science and theology maybe a little bit. There was never any sense in which ‘the God particle’ was suggesting, in any way, the existence of a creator but, at the same time, it stimulates discussion and gets people interested. If they pick up an article or a book or watch a documentary because of a trigger like that then, hopefully, what they’re going to learn is going to be useful. It is an important particle.

I notice from your book that a lot of these particles are either named after people or something like ‘quark’ which was, again, a bit like ‘Goddamn’ wasn’t it?

The origin of ‘quark’ is Finnegans Wake. There’s another American theorist called Murray Gell-Mann who was a bit mischievous. He thought the whole naming business was quite ridiculous. So he happily named these things and perhaps even surprised himself when it turned out that this was actually a correct way of describing elementary particles.

We have things like up and down quarks, strange quarks, charm quarks, top quarks, bottom quarks—all of these different names represent what are known as quark ‘flavours’. Quarks also have ‘colour’. Not, literally, a colour in the sense that we would understand it; they have properties that come in triplets and, in an attempt to keep things in order, physicists chose to call them colours: red, green, and blue. So, you can have a red up quark, and a green down quark, and a blue strange quark, and so on. These are all aspects of things that we’ve learnt about some of these elementary particles. But in a moment of non-seriousness, yes, they can get named sometimes rather strangely.

And ‘boson’ was named after an Indian physicist.

Satyendra Nath Bose. His work came to the attention of Einstein. There’s a branch of development in physics called Bose-Einstein statistics. All of the particles that make up atoms and molecules, that make us up and the universe that we know, the elementary particles that sit at the root of all of those—very much in the nature of Greek ‘atoms’—are all particles with a characteristic spin that means that they’re classed as something called fermions. It doesn’t matter what spin is and it doesn’t matter what properties fermions have, but they are very different from the kinds of particles like photons which carry forces between the matter particles. They have a different spin, of a type that classifies them as bosons. And if you want to know what the fundamental difference is then, in a sense, if it’s a matter particle, such as a quark or an electron, then it’s also a fermion. If it’s a particle that transmits forces between matter particles, then it’s a boson. That’s a simple rule of thumb but that’s how nature is.

I like the picture you have in your book, of Margaret Thatcher entering a room, as a way of illustrating the Higgs boson. Do you think more illustrations, more being able to visualise things, would help people?

Continue reading.

There’s a bit more general discussion, and then he discusses the eponymous Five Books, which in this case are:

  1. Asimov’s Guide to Science.
  2. Subtle Is the Lord: The Science and the Life of Albert Einstein
  3. Quantum Physics: Illusion or Reality
  4. The Philosophy of Quantum Mechanics
  5. Heisenberg’s War: The Secret History of the German Bomb

It’s a relatively long post, but I found it quite interesting.

Written by LeisureGuy

27 June 2017 at 11:18 am

Posted in Books, Science, Writing

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s