Later On

A blog written for those whose interests more or less match mine.

The Woman Whose Invention Helped Win a War — and Still Baffles Weathermen

leave a comment »

Our common culture has long had a blind spot regarding women — their identity, experience, and achievements — and to some extent it is an active blind spot, in which some efforts are made to hide and erase knowledge of women’s accomplishments and women’s valid experience (cf. Harvey Weinstein and how culture covered for his offenses).

Irena Fischer-Hwang writes in Smithsonian Magazine:

On June 4, 2013, the city of Huntsville, Alabama was enjoying a gorgeous day. Blue skies, mild temperatures. Just what the forecasters had predicted.

But in the post-lunch hours, meteorologists started picking up what seemed to be a rogue thunderstorm on the weather radar. The “blob,” as they referred to it, mushroomed on the radar screen. By 4 PM, it covered the entire city of Huntsville. Strangely, however, the actual view out of peoples’ windows remained a calm azure.

The source of the blob turned out to be not a freak weather front, but rather a cloud of radar chaff, a military technology used by nations all across the globe today. Its source was the nearby Redstone Arsenal, which, it seems, had decided that a warm summer’s day would be perfect for a completely routine military test.

More surprising than the effect that radar chaff has on modern weather systems, though, is the fact that its inventor’s life’s work was obscured by the haze of a male-centric scientific community’s outdated traditions.

The inventor of radar chaff was a woman named Joan Curran.

Born Joan Strothers and raised in Swansea on the coast of Wales, she matriculated at the University of Cambridge’s Newnham College in 1934. Strothers studied physics on a full scholarship and enjoyed rowing in her spare time. Upon finishing her degree requirements in 1938, she went to the University’s preeminent Cavendish Laboratory to begin a doctorate in physics.

At the Cavendish, Strothers was assigned to work with a young man named Samuel Curran. For two years, Strothers got along swimmingly with her new lab partner. But with international conflict brewing in Europe, in 1940 the pair was transferred twice to work on military research, and ended up at Exeter.

There, the two developed proximity fuses to destroy enemy planes and rockets. There also, Strothers married Sam and took on his last name, becoming Joan Curran. Shortly after their wedding in November, the Currans transferred to the Telecommunications Research Establishment (TRE) in the autumn of 1940. Curran joined a team led by British physicist and scientific military intelligence expert R.V. Jones that was developing a method to conceal aircraft from enemy radar detection.

The idea, Jones later explained in his book Most Secret War, was simple. Radar detectors measure the reflection of radio waves of a certain wavelength off of incoming objects. As it turns out, thin metal strips can resonate with incoming waves, and also re-radiate the waves. Under the right conditions, the re-radiated waves create the sonic impression of a large object when in reality, there is none—hence, the blob in Alabama.

This property means that a few hundred thin reflectors could, together, reflect as much energy as a heavy British bomber plane would. A collection of strips might conceal the exact location of an aircraft during a raid behind a large cloud of signal, or even lead the enemy to believe they were observing a major attack when in reality, there was only one or two planes.

By the time Pearl Harbor was attacked in 1941, Curran was nearly a year into painstaking experiments on using metals to reflect radar signals. She had tried a seemingly countless number of sizes and shapes, from singular wires to metal leaflets the size of notebook paper. The leaflets had been a particularly interesting idea, since they could do double-duty as propaganda sheets with text printed on them.

In 1942, Curran finally settled on reflectors that were about 25 centimeters long and 1.5 centimeters wide. The reflectors were aluminized paper strips bundled into one-pound packets and intended to be thrown out of the leading aircraft. When defenestrated from a stream of bombers once every minute, they could produce “the radar equivalent of a smokescreen,” according to Jones.

In 1943, the reflector strips were put to a serious military test when the Allies launched Operation Gomorrah on Hamburg, Germany. Operation Gomorrah was a brutal campaign of air raids that lasted over a week, destroyed most of the city and resulted in almost 40,000 civilian deaths. But with rates of only 12 aircraft losses out of 791 on one evening’s bombing raid, the campaign was a major victory for the Allies, in large part due to Curran’s reflectors.

Perhaps most notably, radar chaff was used as part of a large-scale, elaborate diversion on June 5, 1944 to prevent German forces from knowing exactly where the Allied invasion into Nazi-held continental Europe would begin. Deployed on the eve of what would become known as D-Day, two radar chaff drops, Operations Taxable and Glimmer, were combined with hundreds of dummy parachutists to draw German attention towards the northernmost parts of France, and away from the beaches of Normandy.

Curran went on to work on . . .

Continue reading. There’s more.

Later in the article:

“We don’t know how many women were working in the labs of famous male scientists, or how many discoveries women contributed to, because for centuries men did a very good job hiding the achievements of women,” Wade remarked in an email.

Written by LeisureGuy

13 January 2021 at 9:45 am

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.