Later On

A blog written for those whose interests more or less match mine.

Salty Diet Helps Gut Bugs Fight Cancer in Mice

leave a comment »

A while back I cut way back on my salt intake — and I overdid it, which resulted in woozy spells. Salt is in fact a necessary nutrient, but like many nutrients, too little and too much are both bad news (cf. iodine, zinc, iron, vitamin A, and so on). So I resumed a moderate salt intake. I still buy no-salt-added canned tomatoes, vegetable stock, and canned beans, and I don’t eat highly processed foods or bread or cheese, all of which are high in salt. But I do add a modest amount of salt in cooking, and that has worked.

Sophie Fessl has an interesting article in The Scientist on some unexpected benefits of salt in the diet:

In mice, a diet high in salt suppresses tumor growth—but only when gut microbes are there to stimulate immune cells, a September 10 study in Science Advances reports. The findings raise tantalizing questions about the role of diet and gut microbes in human cancers, and may point to new avenues for therapeutic development.

While the study isn’t the first to connect a high-salt diet to shrinking tumors, “[the authors] have shown a unique mechanistic role of high salt induced gut microbiome changes as the central phenomenon behind their observed anti-cancer effect,” writes Venkataswarup Tiriveedhi, a biologist at Tennessee State University who has studied the effect of salt on cancer progression but was not involved in the study, in an email to The Scientist.

Amit Awasthi, an immunologist with the Translational Health Science and Technology Institute in India and corresponding author of the study, says he and his colleagues pursued this line of inquiry because previous research had linked high salt intake with autoimmune diseases, suggesting that increased salt stimulates immune cells. Meanwhile, tumors are well known to grow in immune-suppressive environments. Awasthi recalls wondering with his team: “If we put salt in the mice’s diet, maybe [the immune system in] the tumor environment becomes activated,” suppressing cancerous growth.

Indeed, a 2019 Frontiers in Immunology study from a European team led by Hasselt University immunologist Markus Kleinewietfeld reported that high-salt diets inhibited tumor growth in mice. When Awasthi and his colleagues carried out similar experiments, implanting mice with B16F10 skin melanoma cells and then feeding the tumor transplant mice diets with different salt levels, they got similar results: tumors grew slower in mice who were fed a high-salt diet.

That led to what Awasthi calls an “obvious question”: How does the immune system respond to dietary salt? To answer that, the team dissected the tumor sites and found that immune cells known as natural killer (NK) cells were enriched in the mice fed the high-salt diet compared with mice fed diets with normal or slightly elevated salt levels. When the NK cells were removed, the high-salt diet no longer led to tumor regression—an effect that wasn’t seen after depleting both T and B cells.

To drill into why salt had this effect on NK cells, Awasthi and his colleagues looked in the literature and found studies reporting that high-salt diets alter the gut microbiome, as well as others that found the gut microbiome modulates patients’ response to cancer immunotherapy. To test for a role of the resident gut bacteria in the effects of a high-salt diet on cancer growth, the researchers gave the mice antibiotics before feeding them the different diets. Sure enough, a high-salt diet no longer suppressed tumor growth. But that wasn’t all: when the team transplanted fecal material from mice fed a high-salt diet into microbe-free mice, they were surprised to find that tumors shrank, Awasthi recalls.

See “Does the Microbiome Help the Body Fight Cancer?”

The researchers looked at the diversity of species in the mice’s gut and saw an increased abundance of Bifidobacterium species in mice fed a high-salt diet. Moreover, the tumors of these mice showed a sixfold increase in Bifidobacterium abundance compared with the tumors of mice on a normal diet. According to Awasthi, that suggests “Bifidobacterium is leaking out from the gut and actually reaching the tumor site,” likely the result of salt-induced gut permeability.

In mice fed a normal diet, injection of Bifidobacterium into tumors led to tumor regression, an effect that disappeared if the researchers removed the animals’ NK cells, they reported. Awasthi says that might mean there’s a way to capitalize on the tumor-fighting qualities of a high-salt diet while avoiding the potential downsides, such as autoimmune issues or hypertension: “we can replace the salt with the Bifidobacterium.

Kleinewietfeld says the new study is in line with  . . .

Continue reading.

Written by Leisureguy

20 September 2021 at 6:23 pm

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: