Later On

A blog written for those whose interests more or less match mine.

Archive for January 20th, 2022

The Great Siberian Thaw

leave a comment »

I do wish the New Yorker offered a gift-link option, but they don’t. Still, this report is worth pointing out because it is clearly “mene mene tekel upsharsin” message for our current civilization and society. Joshua Yaffa reports:

Flying over Yakutia, in northeastern Russia, I watched the dark shades of the boreal forest blend with patches of soft, lightly colored grass. I was strapped to a hard metal seat inside the cabin of an Antonov-2, a single-­engine biplane, known in the Soviet era as a kukuruznik, or corn-crop duster. The plane rumbled upward, climbing above a horizon of larch and pine, and lakes the color of mud. It was impossible to tell through the Antonov’s dusty porthole, but below me the ground was breathing, or, rather, exhaling.

Three million years ago, as continent-­size glaciers pulsed down from the poles, temperatures in Siberia plunged to minus eighty degrees Fahrenheit and vast stretches of soil froze underground. As the planet cycled between glacial and interglacial periods, much of that frozen ground thawed, only to freeze again, dozens of times. Around eleven and a half millennia ago, the last ice age gave way to the current interglacial period, and temperatures began to rise. The soil that remained frozen year-round came to be known as permafrost. It now lies beneath nine million square miles of Earth’s surface, a quarter of the landmass of the Northern Hemisphere. Russia has the world’s largest share: two-thirds of the country’s territory sits on permafrost.

In Yakutia, where the permafrost can be nearly a mile deep, annual temperatures have risen by more than two degrees Celsius since the Industrial Revolution, twice the global average. As the air gets hotter, so does the soil. Deforestation and wildfire—both acute problems in Yakutia—remove the protective top layer of vegetation and raise temperatures underground even more.

Over thousands of years, the frozen earth swallowed up all manner of organic material, from tree stumps to woolly mammoths. As the permafrost thaws, microbes in the soil awaken and begin to feast on the defrosting biomass. It’s a funky, organic process, akin to unplugging your freezer and leaving the door open, only to return a day later to see that the chicken breasts in the back have begun to rot. In the case of permafrost, this microbial digestion releases a constant belch of carbon dioxide and methane. Scientific models suggest that the permafrost contains one and a half trillion tons of carbon, twice as much as is currently held in Earth’s atmosphere.

Trofim Maximov, a scientist who studies permafrost’s contribution to climate change, was seated next to me in the Antonov, shouting directions to the pilot in the cockpit. Once a month, Maximov charters the plane in order to measure the concentration of greenhouse gases in the atmosphere above Yakutia. He described the thawing permafrost as a kind of feedback loop: the release of greenhouse gases causes warmer temperatures, which, in turn, melt the permafrost further. “It’s a natural process,” he told me. “Which means that, unlike purely anthropogenic processes”—say, emissions from factories or automobiles—“once it starts, you can’t really stop it.”

A hose attached to the plane’s wing sucked air into a dozen glass cylinders arrayed on the floor of the cabin. By comparing the greenhouse-gas numbers over time, and at various altitudes, Maximov can estimate how permafrost is both affected by a warmer climate and contributing to it. When he started taking airborne measurements, half a decade ago, he found that the concentration of carbon dioxide in the air above Yakutia was increasing at double the rate of historical averages. Methane has a shorter life in the atmosphere than carbon dioxide, but it is more than twenty-­five times as effective at trapping heat. According to Maximov’s data, methane is also being released at an accelerated rate: it is now accumulating fifty per cent faster than it was a generation ago.

At the moment, though, I was mainly concerned with the stomach-turning lurches the plane was making as it descended in a tight spiral. We had dropped to a few hundred feet above the ground so that Maximov’s colleague, a thirty-three-year-old researcher named Roman Petrov, could take the final sample, a low-altitude carbon snapshot. The plane shook like a souped-up go-kart. Petrov held his stomach and buried his face in a plastic bag. Then I did the same. When we finally landed, on a grass-covered airstrip, I staggered out of the cabin, still queasy. Maximov poured some Cognac into a plastic cup. A long sip later, I found that the spinning in my head had slowed, and the ground under me again took on the feeling of reassuring firmness—even though, as I knew, what seemed like terra firma was closer to a big squishy piece of rotting chicken.

Throughout the seventeenth and eighteenth centuries, as the Russian Empire expanded eastward, reports filtered back to the capital of a “firm body of ice” in the ground, in the words of one explorer, that “was never heard of before.” In Yakutsk, the capital of Yakutia, early settlers struggled to grow crops and find sources of fresh groundwater. In the summer of 1827, a merchant named Fedor Shergin, whom the tsar had dispatched to Yakutia as a representative of the Russian-­American Company, tried to dig a well. Shergin’s team of laborers spent the next decade chiselling a shaft, reaching three hundred feet down, only to find yet more frozen earth. Finally, in 1844, Alexander von Middendorff, a prominent scientist and explorer, made his way from St. Petersburg to Yakutsk and estimated, correctly, that the soil under the shaft was frozen to a depth of at least six hundred feet. His findings jolted the Russian scientific academy, and eventually reached the salons of Europe.

Today, the entrance to Shergin’s shaft, as it is known, is housed in a log cabin in the center of Yakutsk, wedged between a concrete apartment block and the burned-out shell of a former military academy. One afternoon last summer, I visited the site with Yuri Murzin, a scientist from the Melnikov Permafrost Institute, based in Yakutsk. “The study of permafrost began here,” he said. “Before Shergin’s shaft, practically no one outside of Yakutia had any idea such a thing existed.” Murzin and I wanted to have a look inside the shaft, which required lifting a series of heavy wooden lids. A column of cold air rushed upward. I looked down but saw only a wall of black. A musty aroma of dirt and ice wafted into the cabin. “It smells of antiquity, of time gone by,” Murzin said. . .

Continue reading. There’s much more.

Later in the article:

But it was Zimov’s ideas on permafrost that had brought him scientific renown. In the early nineties, he was among the first to come to several related realizations: permafrost holds immense quantities of carbon; much of that carbon is released as methane from thermokarst lakes (the presence of water and the absence of oxygen produce methane, as opposed to carbon dioxide, which is released from upper layers of soil); and a sizable portion of those emissions comes in the fall and the winter, cold periods that Arctic scientists had previously considered unimportant from a climate perspective.

. . . Walter Anthony found methane emissions five times higher than Zimov’s initial estimate. Radiocarbon dating showed that the gas was emitted from organic matter that formed between twenty and forty thousand years ago, during the Pleistocene era, indicating that permafrost thaw had reached layers that were deep and ancient. The research was published in a paper in Nature, in 2006, which immediately became a foundational text in establishing the impact of permafrost thaw on climate change.

When I was in Chersky, Zimov took me out to the lake. We walked through shrubs and felt the crunch of bright-red cloudberries under our feet. At the water’s edge, Zimov asked, “You see the bubbles?” Once I knew to look for them, they were impossible to miss. It was as if the lake were a giant cauldron on the brink of a very slow, barely perceptible boil, with a pop of air here and there. Methane.

Zimov explained that, even during Chersky’s frigid winters, temperatures under the lake’s surface remain above freezing. Unfrozen water allows microbes to keep digesting organic matter long after the surrounding landscape is covered in snow. Water also has a powerful erosion effect. “The bank is slowly thawing and collapsing, taking with it fresh pieces of permafrost into the lake,” Zimov said—more fuel for the release of methane. As Walter Anthony, who is now a professor at the University of Alaska Fairbanks, put it to me, “Once permafrost thaws to the point where it creates depressions filled with water, the thaw starts to go deep and fast and expands laterally—you can’t really stop it.”

The mean annual temperature in Chersky has risen by three degrees Celsius in the past fifty years. An equally pressing problem is snow cover. “Snow is like a warm blanket—it doesn’t allow the wintertime cold to penetrate all the way into soil,” Zimov said. One of the effects of climate change is more precipitation in the Arctic ecosystem around Chersky. Yearly snowfall has increased by as much as twenty centimetres since the early eighties, adding two more degrees of warming effect. As a result, Zimov explained, permafrost that used to be minus seven degrees Celsius is now on the verge of thawing, if it hasn’t already.

Adecade ago, a paper about emissions from undersea permafrost led to a moment of hysteria over a so-called methane bomb in the Arctic, poised to release a devastating amount of warming gas all at once. In the years since, much of the scientific community has come to see permafrost thaw more as a slow-motion disaster. “The permafrost isn’t going to release a catastrophic explosion of carbon that would, say, double overnight the amount of carbon dioxide in the atmosphere,” Ted Schuur, who leads a project on permafrost thaw and climate change at the University of Northern Arizona, told me. “Instead, this carbon is going to leak out from all over the Arctic and, over time, add a substantial amount to the carbon humans have already added by burning fossil fuels.” . . .

Methane as a greenhouse gas is more than 25 times more effective than CO2 in trapping heat.

Written by Leisureguy

20 January 2022 at 4:05 pm

Spirit (another David C. Roy kinetic sculpture

leave a comment »

Spirit Spectifications:

• Size – 22″ in diameter x 6″ deep 
• Run-Time – 5 hours (approximately)
• Limited Edition of: 75
• Price: $2900 USA and Canada only – no other international shipping during this challenging time
Link to more info, video and photographs

Written by Leisureguy

20 January 2022 at 11:49 am

Posted in Art, Daily life, Video

J.M. Fraser and the Victorian, with an Edwin Jagger in Charcoal clothing

with 2 comments

I tried a barely damp Rooney Victorian with J.M. Fraser and had no difficulty at all in loading the brush, but of course this is a shaving cream, not a shaving soap, and although somewhat desiccated, it remaiins soft enough to load easily. I did add water a couple of times as I worked up the lather on my face.

J.M. Fraser is a favorite and I find it curiously effective in prepping the stubble. However, the razor this morning (a Charcoal head that is an Edwin Jagger/Mühle clone, along with a Wolfman handle) struggled a bit. This razor is normally quite efficient, so I figured the Astra Superior Platinum blade it carried was just worn out. After the shave, replaced that blade with a Wilkinson Sword. We’ll see tomorrow if that fixes the problem. (I’n sure it will.)

A good splash of Speick EDT with a couple of squirts of Hydrating Gel and I at last am up and at ’em. Today is sunny, a great pleasure.

Written by Leisureguy

20 January 2022 at 10:29 am

Posted in Shaving

%d bloggers like this: