Plant-based processed meat substitutes: Not so good
Because I follow a whole-food plant-based diet, I don’t explore refined and highly processed foods, though I did once try a Beyond burger (meh).
I do “process” some foods in various way — rinsing, peeling, chopping, blending, steaming, roasting, sautéing, fermenting — but that’s a far cry from manufacturing foods from refined ingredients and including a variety of additives (flavor, coloring, salt, cheap oil, preservatives) to be sold packaged under a brand name. That kind of “food” I skip, and that takes care of manufactured meat substitutes.
Two recent studies show the drawbacks of manufactured (aka “highly processed,” “ultraprocessed”) foods.
Unintended Consequences: Nutritional Impact and Potential Pitfalls of Switching from Animal- to Plant-Based Foods
Abstract:
Consumers are shifting towards plant-based diets, driven by both environmental and health reasons. This has led to the development of new plant-based meat alternatives (PBMAs) that are marketed as being sustainable and good for health. However, it remains unclear whether these novel PBMAs to replace animal foods carry the same established nutritional benefits as traditional plant-based diets based on pulses, legumes, [grains,] and vegetables. We modelled a reference omnivore diet using NHANES 2017–2018 data and compared it to diets that substituted animal products in the reference diet with either traditional or novel plant-based foods to create flexitarian, vegetarian, and vegan diets matched for calories and macronutrients. With the exception of the traditional vegan diet, all diets with traditional plant-based substitutes met daily requirements for calcium, potassium, magnesium, phosphorus, zinc, iron, and Vitamin B12 and were lower in saturated fat, sodium, and sugar than the reference diet. Diets based on novel plant-based substitutes were below daily requirements for calcium, potassium, magnesium, zinc, and Vitamin B12 and exceeded the reference diet for saturated fat, sodium, and sugar. Much of the recent focus has been on protein quality and quantity, but our case study highlights the risk of unintentionally increasing undesirable nutrients while reducing the overall nutrient density of the diet when less healthy plant-based substitutes are selected. Opportunities exist for PBMA producers to enhance the nutrient profile and diversify the format of future plant-based foods that are marketed as healthy, sustainable alternatives to animal-based products. View Full-Text

A metabolomics comparison of plant-based meat and grass-fed meat indicates large nutritional differences despite comparable Nutrition Facts panels
A new generation of plant-based meat alternatives—formulated to mimic the taste and nutritional composition of red meat—have attracted considerable consumer interest, research attention, and media coverage. This has raised questions of whether plant-based meat alternatives represent proper nutritional replacements to animal meat. The goal of our study was to use untargeted metabolomics to provide an in-depth comparison of the metabolite profiles a popular plant-based meat alternative (n = 18) and grass-fed ground beef (n = 18) matched for serving size (113 g) and fat content (14 g). Despite apparent similarities based on Nutrition Facts panels, our metabolomics analysis found that metabolite abundances between the plant-based meat alternative and grass-fed ground beef differed by 90% (171 out of 190 profiled metabolites; false discovery rate adjusted p < 0.05). Several metabolites were found either exclusively (22 metabolites) or in greater quantities in beef (51 metabolites) (all, p < 0.05). Nutrients such as docosahexaenoic acid (ω-3), niacinamide (vitamin B3), glucosamine, hydroxyproline and the anti-oxidants allantoin, anserine, cysteamine, spermine, and squalene were amongst those only found in beef. Several other metabolites were found exclusively (31 metabolites) or in greater quantities (67 metabolites) in the plant-based meat alternative (all, p < 0.05). Ascorbate (vitamin C), phytosterols, and several phenolic anti-oxidants such as loganin, sulfurol, syringic acid, tyrosol, and vanillic acid were amongst those only found in the plant-based meat alternative. Large differences in metabolites within various nutrient classes (e.g., amino acids, dipeptides, vitamins, phenols, tocopherols, and fatty acids) with physiological, anti-inflammatory, and/or immunomodulatory roles indicate that these products should not be viewed as truly nutritionally interchangeable, but could be viewed as complementary in terms of provided nutrients. The new information we provide is important for making informed decisions by consumers and health professionals. It cannot be determined from our data if either source is healthier to consume.
Introduction
By 2050, global food systems will need to meet the dietary demands of almost 10 billion people. To meet these demands in a healthy and sustainable manner, it is put forward that diets would benefit from a shift towards consumption of more plant-based foods and less meat, particularly in Western countries1. This has raised questions whether novel plant-based meat alternatives represent healthy and nutritionally adequate alternatives to meat2,3,4,5.
The new generation of plant-based meat alternatives such as the Impossible Burger and Beyond Burger are becoming increasingly popular with consumers. Their success has led other international food companies—including traditional meat companies—to invest in their own product versions6. The global plant-based meat alternative sector has experienced substantial growth and is projected to increase from . . .
Always keep in mind that the main priority of corporations is their profits, not your welfare.
Leave a Reply